Duration: 3 MONTHS

Course Syllabus

Course Title: Statistics 

Duration: 3 months (part-time) 

Target Audience: Indian students interested in self-employment and career growth in statistics

Course Objectives:

  1. To equip students with essential knowledge and skills in statistics for effective self-employment.
  2. To provide a comprehensive understanding of various aspects of statistics, including probability, statistical inference, linear inference, multivariate analysis, and more.
  3. To enhance students' ability to apply statistical techniques in various fields, enabling them to excel in the field of statistics.

Course Overview: This part-time course focuses on statistics, covering key subjects such as probability, statistical inference, linear inference and multivariate analysis, sampling theory, design of experiments, industrial statistics, optimization techniques, quantitative economics, official statistics, demography, and psychometrics. The course is designed to help students develop the necessary skills and knowledge for self-employment and career growth in the field of statistics.

Teaching Methodology: The course will utilize a combination of lectures, case studies, group discussions, and practical assignments to provide a comprehensive learning experience. Students will have the opportunity to engage in hands-on learning through real-world examples and interactive activities.

Importance for Learners: Upon completion of the course, learners will be well-equipped to excel in the field of statistics, contributing to their career growth and self-employment opportunities. The course contents can be tailored to the specific requirements of the learner or the local context, ensuring maximum relevance and applicability.

Course Contents:

Week 1-2: Probability

  • Basic concepts and rules of probability
  • Conditional probability and independence
  • Discrete and continuous probability distributions

Week 3-4: Statistical Inference

  • Point estimation and interval estimation
  • Hypothesis testing, parametric and non-parametric tests
  • Regression and correlation analysis

Week 5-6: Linear Inference and Multivariate Analysis

  • Simple and multiple linear regression
  • Analysis of variance (ANOVA)
  • Principal component analysis and factor analysis

Week 7-8: Sampling Theory and Design of Experiments

  • Simple random sampling, stratified sampling, and cluster sampling
  • Sample size determination
  • Completely randomized design, randomized block design, and factorial design

Week 9-10: Industrial Statistics and Optimization Techniques

  • Statistical process control and quality control charts
  • Design and analysis of reliability studies
  • Linear programming, nonlinear programming, and integer programming

Week 11: Quantitative Economics and Official Statistics

  • Application of statistics in economics
  • Index numbers, time series analysis, and forecasting
  • Understanding official statistics and their importance

Week 12: Demography and Psychometrics

  • Basic demographic measures and population projections
  • Statistical techniques in psychometrics
  • Test construction and validation

*Note: Course contents may be modified based on the requirements of the learner or the local context.

Read More



Back to top